Quantcast
Channel: ヤスコヴィッチのぽれぽれBLOG
Viewing all articles
Browse latest Browse all 1329

【フェルマーの最終定理】

$
0
0
気分転換に【フェルマーの最終定理】の話を・・・・

フェルマーの最終定理(Fermat's Last Theorem)とは、3 以上の自然数 n について、
となる 0 でない自然数 (x, y, z) の組が存在しない、という定理のことである。
フェルマーの大定理とも呼ばれる。

フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反例もなされなかったことからフェルマー予想とも称されたが、360年後にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。

  

【近代的アプローチへ】
[モジュラー形式]
ポアンカレは複素平面上の関数についての研究から、保型形式およびそのアイディアをさらに展開したモジュラー形式を案出する。

[モーデル予想]
ファルティングスによるモーデル予想の解決(1983年)により、フェルマー方程式 xn + yn = zn が整数解をもつならば(つまりフェルマー予想が誤りならば)その解の個数は本質的に有限個しかないことが証明される。この「有限個」が「実は 0 個」であることが示されればフェルマー予想は証明できたことになるが、この方向からの絞り込みには行き詰まりが指摘されていた。ともあれ、この時点でフェルマー予想が「ほとんど全ての場合について正しい」ことが判明したと言うことはできた。

[谷山・志村予想]
1955年9月、日光で開催された整数論に関する国際会議で、谷山豊が提出した幾つかの「問題」を原型とする数学の予想。そこでは楕円曲線とモジュラー形式の間の深い関係が示唆されており、後に志村五郎によって定式化された。「すべての楕円曲線はモジュラーである」という、発表当時は注目を引かなかったこの谷山・志村予想(今となっては証明されているが)が、のちにフェルマー予想の証明に大きな役割を果たすこととなる。

実はこの前年の1954年、ある保型形式に関するラマヌジャン予想の一部をアイヒラーが証明していた。そこでは「解析的ゼータ=代数的ゼータ」が示されており、谷山・志村予想の最初の実例と呼べるものだった。

このラマヌジャン予想→谷山・志村予想→ラングランズ予想→超ラングランズ予想という一連の流れ(ゼータの統一)は数論の中心的テーマの1つとなっている。

[フライ・セール予想]
1984年にフライはフェルマーの最終定理に対する反例 an + bn = cn からはモジュラーでない楕円曲線(フライ曲線):
y2 = x(x − an)(x + bn)
が得られ、これは谷山・志村予想に対する反例を与えることになるというアイディアを提示。セールによって定式化されたこの予想はフライ・セールのイプシロン予想と呼ばれ、1986年にケン・リベットによって証明された。

これらの経過は以下のように整理することができる。
1.まず、フェルマー予想が偽である(フェルマー方程式が自然数解をもつ)と仮定する。
2.この自然数解からは、モジュラーでない楕円曲線を作ることができる。
3.谷山・志村予想が正しいならば、モジュラーでない楕円曲線は存在しない。
4.矛盾が導かれたので、当初の仮定が誤っていることとなる。
5.したがって、フェルマー予想は真である。(背理法)

つまり、谷山・志村予想が証明されたならば、それはフェルマーの最終定理が証明されたことをも意味するのである。

【最終的解決】
プリンストン大学にいたイギリス生まれの数学者アンドリュー・ワイルズは岩澤主予想(en:Iwasawa main conjecture)を解決するなどして、元々数論の研究者として有名な人物であった。彼は10歳当時に触れたフェルマー予想に憧れて数学者となったが、プロとなってからは子供時代の夢は封印し、フェルマー予想のような孤立した骨董品ではなく主流数学の研究に勤しんでいた。ところが1986年、ケン・リベットがフライ・セール予想を解決したことにより、フェルマー予想に挑むことは、主流数学の一大予想に挑むことと同義になってしまった。かつての憧れだったものが、今や骨董品どころか解かずには済まされない中心課題の1つになったのである。ワイルズはこのことに強い衝撃を受け発奮、正にフェルマー予想の解決を目的として、他の研究を全て止めて谷山・志村予想に取り組むこととなった。ただしこの際、彼は人々の耳目を集め過ぎることを懸念して、表面的には未発表の研究成果を小出しにすることで偽装し、谷山・志村予想の研究は秘密裏に遂行することとした。

ワイルズは、代数幾何学(特に楕円曲線と群スキーム)や数論(モジュラー形式やガロア表現、ヘッケ環、岩澤理論)の高度な道具立てを用いて証明を試みたが、類数公式の導出に当り岩澤理論を用いる方向では行き詰まってしまった。そこでコリヴァギン=フラッハ法(ヴィクター・コリヴァギンとマティアス・フラッハの方法)に基づくよう方針転換し、最後のレビュー段階でプリンストンの同僚ニック・カッツの助けを得るまで、細部に至るまでの証明を完璧な秘密のうちにほぼすべて独力で成し遂げた(ここまでで7年が経過していた)。彼がケンブリッジ大学で1993年の6月21日から23日にかけて3つの講義からなるコースで証明を発表したとき、聴衆は証明に使われた数々の発想と構成に驚愕した。

ただし、その後の査読において、ワイルズの証明には一箇所致命的な誤りがあることが判明した。この修正は難航したが、ワイルズは彼の教え子リチャード・テイラーの助けを借りつつ、約1年後の1994年9月、障害を回避することに成功した。ワイルズ自身、その時の瞬間を「研究を始めて以来、最も大事な一瞬」と語っている。1994年10月に新しい証明を発表。1995年のAnnals of Mathematics誌において出版し、その証明は、1995年2月13日に誤りがないことが確認され、360年に渡る歴史に決着を付けた。なお、証明の過程では、まずはコリヴァギン=フラッハ法を用いたが、それでは不十分だと判明したので、以前に採用してから放棄していた岩澤理論を併用することで、最終的な証明が完成した。

Viewing all articles
Browse latest Browse all 1329

Trending Articles